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Abstract. We investigate stationary and travelling wave solutions of the classical one-dimensional trans-
verse field Ising model. Results are given on the existence, shape and stability of kink solutions and periodic
solutions. We review recent analytical results (e.g., the proof of existence of a one-parameter family of sta-
tionary kink solutions and the proof of existence of travelling wave kink solutions with nonzero velocity
c 6= 0) and extend them by the use of numerical methods. Small oscillations arising in the tails of travelling
kink solutions are investigated numerically. In the end, stability analysis puts some light on pinning effects.

PACS. 05.45.Yv Solitons – 75.10.Hk Classical spin models

1 Introduction

One-dimensional spin systems are of great interest in the
analysis of quasi one-dimensional magnetic chains (cf. [5]).
A lot of work has been done on the analysis of both, quan-
tum and classical models (e.g., the XYZ model and its
special cases, the Heisenberg model and the Ising model).
Many of these models turn out to be completely inte-
grable. However, this article deals with a non-integrable
model system, the classical transverse field Ising chain.
Our goal is the investigation of basic types of solutions.
While we are unable to give a closed expression for any
nontrivial solution, it is still possible to give a proof of
existence in many cases. Giving existence proofs for cer-
tain types of solutions was the main topic of the previous
work [4] by the author. In the present article we investi-
gate those types of solutions numerically in order to obtain
further information.

This article is primarily concerned with the analysis of
domain wall motion. The domain walls can travell trough
the lattice under the influence of an external transverse
magnetic field. A single domain wall in a double sided
infinitely extended chain will be represented by a kink so-
lution. Easily spoken, this is a solution, interpolating in
space between two disjoint ground states. We will give re-
sults on the domain of existence, shape, energy and stabil-
ity of both, stationary and travelling wave kink solutions.

In Section 2 we present the equations of motion and
some preliminary results on translationally invariant solu-
tions (i.e., solutions constant in space).

Stationary (i.e., time independent) kink solutions are
considered in Section 3. Besides the well known CS and
CB solutions (classified by their reflectional symmetry in
space; for a precise definition see below) an additional one-
parameter family of stationary kink solutions exists for
an open set of parameter values. Numerical results on the
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energy of kink solutions and the Peierls-Nabarro barrier
will be given.

Section 4 is concerned with travelling wave solutions.
First, we give a short survey on periodic solutions. Possible
periods of these solutions can be calculated explicitly. The
remainder of this section is concerned with nonstationary
kink solutions. Their existence can be proved analytically.
We give an asymptotic expression for their shape in the
continuum limit. The domain of existence of kink solu-
tions in parameter space will be calculated numerically.
Furthermore, numerical results lead to an understanding
of oscillations in the tail of travelling kink solutions with
nonzero velocity. The energy of the central kink and the
energy density of the oscillations in the tail will be calcu-
lated, too.

In Section 5 we investigate the stability of the solutions
considered above. This is done by spectral methods. One
application of stability analysis is a better understanding
of pinning effects.

2 Preliminaries

We consider the Hamiltonian

H = lim
n→∞

H(−n, n) (1)

with the local Hamiltonian

H(a, b) = −2J

[
b−1∑
x=a

s1(x)s1(x+ 1) + λ
b∑

x=a

s3(x)

]
. (2)

By si(x), i = 1, 2, 3 we denote the spin components at
the lattice site x ∈ Z. λ ∈ R denotes the strength of a
transverse magnetic field. Without loss of generality, we
can choose the coupling constant 2J 6= 0 to be positive.
The sign of 2J can be inverted by a 180◦ rotation of spins
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around the 3 axis at every other site (for example at every
odd site) and the transition λ → −λ. In addition, we
can choose 2J = 1 by a time gauge. Furthermore, we
restrict our attention to chains of the same spin s(x) =√
s2

1(x) + s2
2(x) + s2

3(x) at every lattice site x. We choose
the spin s(x) to be equal to 1.

Using the Poisson brackets

[si(x), sj(y)] = δxy

3∑
k=1

εijk sk(x) (3)

and

ṡi(x, t) = lim
n→∞

[si(x, t),H(−n, n)] (4)

we obtain the following equations of motion

ṡ1(x, t) = λs2(x, t) (5)
ṡ2(x, t) = −λs1(x, t) + s3(x, t) (s1(x− 1, t) + s1(x+ 1, t))
ṡ3(x, t) = −s2(x, t) (s1(x− 1, t) + s1(x+ 1, t)) .

The most simple solutions of equation (5) are transla-
tionally invariant stationary solutions (i.e., solutions con-
stant in time and space). Using the ansatz si(x, t) = si
together with the normalization condition s2

1+s2
2 +s2

3 = 1,
we obtain the following solutions of this type for (s1, s2, s3)(

±
√

1− λ2

4
, 0,

λ

2

)
for −2 < λ < 2 (6)

(0, 0, ±1) (7)
(0, cos(µ), sin(µ)) for λ = 0 and µ ∈ R. (8)

The energy density (i.e., mean energy per lattice site)
of this solutions equals −

(
1 + λ2

4

)
in the first case, ∓λ

in the second case, and 0 in the last case. For |λ| ≥ 2,
the transverse field dominates the next neighbour inter-
action. Therefore, the ground state is given by the so-
lution (0, 0, sgn(λ)). At the bifurcation points |λ| = 2
the next neighbour interaction starts dominating and the
groundstate pitchforkes into two groundstates (6) and a
solution (0, 0, sgn(λ)) with higher energy density. In the
case |λ| < 2 of ground state degeneration, kink solutions
have been proved to exist. They will interpolate in space
between two distinct translationally invariant solutions
which have the same energy density.

3 Stationary kink solutions

If we consider stationary (i.e., time independent) solutions
of equation (5), we obtain the following set of difference
equations for the spin components si(x); i = 1, 2, 3; x ∈ Z

0 = λs2(x) (9)
0 = −λs1(x) + s3(x) (s1(x− 1) + s1(x+ 1))
0 = −s2(x) (s1(x− 1) + s1(x+ 1))

−15 −10 −5 0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

s 1

λ = 0.5
λ = 1.5
λ = 1.9

Fig. 1. CS solutions for different values of λ.

together with the normalization condition

s2
1(x) + s2

2(x) + s2
3(x) = 1 (10)

for each x ∈ Z. In the case λ 6= 0, we obtain directly
s2(x) = 0 for all x.

If λ = 0, there are two basic types of kink solutions,
namely

(s1(x), s2(x), s3(x)) =

 (−1, 0, 0) for x < 0
(µ1, µ2, µ3) for x = 0

(1, 0, 0) for x > 0
(11)

(s1(x), s2(x), s3(x)) = (0, cos(ν(x)), sin(ν(x))) (12)

with µi ∈ R, µ2
1+µ2

2+µ2
3 = 1 and a real valued function ν :

Z → R/2π with lim
x→−∞

ν(x) 6= lim
x→∞

ν(x). Solution (12) is

an exceptional case for vanishing field λ = 0. Two special
cases of solution (11) will be important in the following.
They are classified by their reflectional symmetry in the s1

component. In the case µ1 = 0, solution (11) is symmetric
under spin inversion and spatial reflection with respect to
a lattice site. Therefore, it is called central spin (CS). In
the case µ1 = ±1, solution (11) is symmetric under spin
inversion and spatial reflection with respect to the center
between two neighboured lattice sites. It is called central
bond (CB).

CS and CB solutions are well known in the literature
(cf. [6]). Their existence on the maximal parameter range
|λ| < 2 is proved analytical in [4]. Some typically shapes
of CS and CB solutions are presented in Figures 1 and 2.
These solutions are of the form(

s1(x), 0, sgn(λ)
√

1− s2
1(x)

)
. (13)

The energy of CS and CB solutions relative to the
translationally invariant stationary solution (6) is shown
in Figure 3. The Peierls-Nabarro barrierEPN = ECB−ECS

is shown in Figure 4.
In addition to CS and CB solutions, there does exist

a one-parameter family of stationary kink solutions for a
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Fig. 2. CB solutions for different values of λ.
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Fig. 3. Energy of the CS and CB solutions against λ.
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Fig. 4. Peierls-Nabarro barrier as a function of λ.

nonempty interval |λ| ∈ ]λ0, 2[. Their existence is proved
analytically in [4] by use of the implicit function theorem.
In general, these solutions do not admit any reflectional
symmetry. They can be described by a continuous function
sc : R→ [−1, 1] and satisfy

(s1(x), s2(x), s3(x))

=
(
sc(x+ x0), 0, sgn(λ)

√
1− s2

c(x+ x0)
)

(14)

with x ∈ Z and fixed x0 ∈ R. Numerically, this family of
solutions can be observed for 1.9 < |λ| < 2.0. In the limit,
as |λ| → 2, it behaves as

ŝc(x) = ±
√

1− λ2

4
tanh

(√
1
2

(
1− λ2

4

)
x

)
. (15)

We obtain CS solutions by choosing x0 ∈ Z. CB solutions
can be obtained with x0 ∈ Z + 1

2 . The energy of this
family of stationary kink solutions is independent of the
shift x0 within the range of numerical errors. Therefore,
it equals ECS and ECB. It needs to be investigated in
the future whether this numerical result can be confirmed
analytically.

In [8] there has been investigated an approximative
model system, obtained from equation (5) by a contin-
uum approximation. In the limit, as |λ| → 2, one obtains
for this model system the same asymptotic behaviour as
given in equation (15). It is compatible with that of the
stationary kink solution given in [8] as an implicit expres-
sion only.

4 Travelling wave solutions

In the following section we consider travelling wave so-
lutions si(x, t) = si(x − c t) of equation (5) for a given
velocity c ∈ R.

4.1 Periodic solutions

First, we consider periodic solutions. In a neighbourhood
of the translationally invariant stationary solutions (6)
and (7) cosine shaped travelling wave solutions of small
amplitude can be observed. For almost all 0 < |λ| < 2 and
c 6= 0, the existence of such solutions near the transla-
tionally invariant stationary solutions (6) has been proved
analytically in [4] by use of the implicit function theorem.
Their period 2π

ξ is given by zeroes of the characteristic
equation

h(ξ) = 4− c2ξ2 − λ2 cos(ξ) = 0. (16)

In the given parameter range, equation (16) allows at least
one zero ξ0 > 0. Additional zeroes appear and disappear
in pairs as the parameters λ and c vary. The periodic solu-
tions change their shape and period slightly for increasing
amplitudes.
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The same holds true for periodic solutions in a neigh-
bourhood of the translationally invariant stationary solu-
tion (7). Now, the characteristic equation reads as follows

h(ξ) = λ2 − c2ξ2 − 2λ cos(ξ) = 0. (17)

In the case |λ| < 2, this equation has zeroes only if |c|
is sufficiently small. In the case |λ| > 2, for almost all
c 6= 0, the existence of periodic solutions can be proved
analytically.

The periodic solutions investigated here are well known
in the literature as spin waves, obtained in terms of expan-
sions up to any order. However, for a zero set of parameter
values λ and c, we run into resonances. An expansion does
not even exist formally in this case.

4.2 Kink solutions

In contrast to stationary kink solutions (i.e., travelling
wave kink solutions with velocity c = 0) for kink solu-
tions with nonzero velocity c, we allow small oscillations
(i.e., magnons) to be superimposed. Because of the travel-
ling wave ansatz, these oscillations have the same velocity
as the kink. Superpositions of travelling kinks and oscil-
lations with different velocities should be investigated in
the future. For nonzero velocity c, the kink looses energy
while propagating through the lattice. Therefore, radia-
tion has to be pumped into the medium to keep the kink
propagating (cf. [1,2,7]).

The existence of kink solutions with magnons has been
proved by use of the implicit function theorem for any
given |c| <

√
2 and an open parameter range of sufficiently

large |λ| < 2 (cf. [4]). These solutions satisfy

s2(x) =
c

λ

d
dx

s1(x) (18)

s3(x) = sgn(λ)
√

1− s2
1(x)− s2

2(x). (19)

In the limit |λ| → 2, the s1-component behaves like

ŝ1(x) = ±
√

1− λ2

4
tanh

(√
1

2− c2
(

1− λ2

4

)
x

)
.

(20)

In the case λ = 0, there do exist kink solutions with ve-
locity c = 0 only.

In equation (20), there cannot be seen any magnons
at all. Actually, the proof does not tell if there are any
magnons for |λ| < 2. This is just not excluded by the
proof. On the other side, it has not been possible to prove
the nonexistence of magnons for |λ| < 2 and c 6= 0. Nu-
merically, magnons can be observed immediately if |λ| gets
smaller than 2 (i.e., the amplitude of the solution becomes
larger than zero).

Figure 5 shows some typical shapes of travelling kink
solutions. The corresponding asymptotic solutions (20)
are plotted in addition. Figure 6 shows the range in the
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(λ, c)-plane where kink solutions with magnons have been
observed numerically.

The oscillations in the tail of travelling kink solutions
turn out to be described very well by the periodic solutions
investigated above. In particular, the same restrictions to
the period of the oscillations do apply in this case as well.
Figures 7 and 8 show some typical amplitudes and peri-
ods of oscillations in numerically calculated kink solutions
for λ = 1.5 and different velocities c. In addition, the cor-
responding periods for small-amplitude periodic solutions
calculated from the characteristic equation (16) are plot-
ted. Both periods fit very well for small amplitudes, but
for increasing amplitudes they differ slightly. This effect
arises, because equation (16) gives the period of small os-
cillations only. If the amplitude of the oscillation becomes
larger, its period changes slightly. Both curves match ex-
actly if one calculates the period of oscillations with the
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Fig. 7. Amplitude of the oscillations in the tail of travelling
kink solutions for λ = 1.5.
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solutions for λ = 1.5.

same amplitude as the oscillations in the tail of the trav-
elling kink. The small stairs in Figure 8 are caused by nu-
merics. They represent the discretization of the real line,
on which the period of the oscillations has to be mea-
sured. The spikes in Figure 7 are numerical artefacts too.
They become smaller if one uses a finer grid. Actually,
the period of numerically calculated oscillations tends to
be a multiple of the discretization width. Now, the period
depends continuously on the amplitude (and vice versa)
and changes only slightly. Therefore, special pairs of pe-
riods and amplitudes are preferred by numerics and the
amplitudes are affected most strongly by this effect.

The energy density of the oscillations in the tail of
travelling kink solutions is plotted in Figure 9. The pe-
riod of the oscillations varies only slowly with increasing
c. Therefore, the energy density is mainly determined by
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Fig. 9. Energy density of the oscillations in the tail of trav-
elling kink solutions for λ = 1.5.
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Fig. 10. Energy of the travelling kink for λ = 1.5.

their amplitude. The spikes are caused by the same nu-
merical effect as in Figure 7. In addition, in Figure 10
there is plotted the energy of the travelling kink relative
to the energy of a periodic solution with the same ampli-
tude and period as the tail-oscillations (but without kink).
For tail-oscillations of large amplitude (i.e., c > 0.8), the
kink energy is varying strongly with increasing c. Again,
this effect is caused by numerics. As stated above, in the
case of oscillations of large amplitude, their exact shape
(i.e., their amplitude) is determined by “snapping” the pe-
riod to the discretization used for numerics. So, the main
contribution to kink energy is due to fitting the central
kink and the tail-oscillations to one another.

For the numerical calculation of travelling wave and
stationary solutions, Newton’s method has been used. If
we plug the travelling wave ansatz si(x, t) = si(x−c t) into
equation (5), we obtain a differential difference equation
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Table 1. Translationally invariant stationary solutions: Spectra and domains of stability.

Solution Domain Spectrum Domain of stability�
±
q

1− λ2

4 , 0, λ
2

�
|λ| < 2 ±

�√
4− λ2,

√
4 + λ2

�
i |λ| < 2

(0, 0, ±1) λ ∈ R
n
±
p
λ(2µ− λ)

���µ ∈ [−1, 1]
o

λ = 0 or |λ| ≥ 2

(0, cos(µ), sin(µ)) λ = 0 {0} λ = 0

with both forward and backward shifted arguments. At
given sites xj ∈ R, we solve the discretization of this “trav-
elling wave equation” by Newton’s method. The xj have
been chosen to be equidistant on an interval [A,B] (e.g.,
xj = j

10 or j
100 for c 6= 0 and xj = j for c = 0). Due to the

shifted arguments in the basic equation, we have to impose
boundary values on two intervals [A−1, A[ and ]B,B+1].
The boundary values can be chosen in accordance to the
translationally invariant stationary solutions (6, 7) or (8).
Much better results have been achieved by carrying out
the nth Newton step on an interval [A + n,B − n]. Now,
the boundary values on the intervals [A+n−1, A+n[ and
]B − n,B − n + 1] are given by the solution of the New-
ton step before. The disadvantage of this method is the
shrinking of the domain in every Newton step. Therefore,
one has to prescribe the number of steps before starting
the iteration.

5 Spectral stability

In order to analyze stability, we linearize the
equations of motion (5) around a given solution
(s10(x, t), s20(x, t), s30(x, t)). The perturbation ansatz

si(x, t) = si0(x, t) + si1(x, t) (21)

gives the following set of linearized equations of motion
for a perturbation (s11(x, t), s21(x, t), s31(x, t))

ṡ11(x, t) = λ s21(x, t) (22)
ṡ21(x, t) = −λ s11(x, t)

+s30(x, t) (s11(x− 1, t) + s11(x+ 1, t))
+s31(x, t) (s10(x− 1, t) + s10(x+ 1, t))

ṡ31(x, t) = −s20 (s11(x− 1, t) + s11(x+ 1, t))
−s21(x, t) (s10(x− 1, t) + s10(x+ 1, t)) .

The right hand side of equation (22) determines a lin-
ear bounded operator F (s10(t), s20(t), s30(t)) mapping
perturbations in l2(Z,C3) to l2(Z,C3). An investigation
of the spectrum of the operator F (s10(t), s20(t), s30(t))
will give information about the stability of the solution
(s10(x, t), s20(x, t), s30(x, t)). If there are contributions to
the spectrum with positive real part, we will call the so-
lution linearly unstable. Otherwise it will be called spec-
trally stable. Due to some freedom in choosing the an-
gular momentum per spin

√
s2

1(x, t) + s2
2(x, t) + s2

3(x, t),
there will be “unphysical” eigenvalues. If the solution
(s11(x, t), s21(x, t), s31(x, t)) is stationary, this unphysical
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Fig. 11. Spectrum of the CS solution for λ = 1.5.

eigenvalues will be zero. In general, they can be ruled out
by requiring

s10(x, t) s11(x, t) + s20(x, t) s21(x, t)
+ s30(x, t) s31(x, t) = 0 (23)

which is the linearization of the normalization condition
s2

1(x, t) + s2
2(x, t) + s2

3(x, t) = 1.
First, we consider the translationally invariant station-

ary solutions (6, 7) and (8). In this case, the operator
F (s10, s20, s30) is time independent. Table 1 presents the
corresponding spectra and domains of stability (for an an-
alytical proof cf. [4]).

Stationary kink solutions have been proved analyti-
cally to have the same essential spectra as the transla-
tionally invariant stationary solution (6) (cf. [4]). This
holds true because, as x tends to ±∞, these solutions look
like solution (6). In addition, for stationary kink solutions
there does exist a nonempty discrete spectrum. These dis-
crete spectra have to be computed numerically. Figures 11
and 12 show typical spectra of CS and CB solutions. In
general, CS solutions are spectrally stable. CB solutions
typically have a pair of real valued eigenvalues. Therefore,
they are linearly unstable. In Figure 13, the positive real
eigenvalue of the CB solution is plotted as a function of λ.
For λ ' 1.9, the real valued pair of eigenvalues becomes
much smaller than numerical accuracy. This goes hand in
hand with the appearance of the one-parameter family of
stationary kink solutions considered in Section 3. A cor-
relation of both phenomena has to be investigated more
deeply in the future.
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The eigenvectors, corresponding to the pair of real val-
ued eigenvalues cause the CB solution to start travelling
through the lattice. As CB solutions are linearly unstable,
already a very small perturbation can cause this effect. In
contrast, all eigenvalues of CS solutions are purely imag-
inary. Therefore, these are spectrally stable. In order to
perturb a CS solution into a travelling solution, a suffi-
ciently big amount of perturbation energy is needed. If a
perturbation is too small, it will cause small oscillations
around the CS solution only. This effect is called “pin-
ning”. Figures 14 and 15 show perturbations of CS and
CB solutions. In the first case, pinning takes effect. In the
second case, we used a suitable eigenvector for perturba-
tion. Therefore, the kink starts travelling until it has lost
enough energy by radiation to be trapped again.

For periodic travelling wave solutions and kink solu-
tions with nonzero velocity c there are no analytical re-
sults. Numerically, they are always linearly unstable. In
contradiction to the stationary solutions considered above,
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Fig. 14. Perturbation of a CS solution.
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Fig. 15. Perturbation of a CB solution.
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Fig. 16. Spectrum of a kink solution with oscillations for a
nonzero velocity c = 1.1 and λ = 1.5.

there are now positive real parts in the essential spectrum.
This is not surprising if the solutions vary continuously
with the parameter c. Then, a slight change in shape can
cause a small change in velocity. Therefore, the changed
and unchanged solutions separate in time more and more.
In Figure 16, a typical spectrum of a travelling wave so-
lution with nonzero velocity c is presented.
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